PLEASE DO NOT REMOVE FROM LIBRARY



**Bureau of Mines Report of Investigations/1985** 

# Thermodynamic Properties of CoS<sub>0.89</sub>, CoS<sub>1.33</sub>, and CoS<sub>2</sub>

By J. M. Stuve, R. P. Beyer, and R. R. Brown





UNITED STATES DEPARTMENT OF THE INTERIOR

**Report of Investigations 8994** 

# Thermodynamic Properties of $CoS_{0.89}$ , $CoS_{1.33}$ , and $CoS_2$

By J. M. Stuve, R. P. Beyer, and R. R. Brown



**UNITED STATES DEPARTMENT OF THE INTERIOR** Donald Paul Hodel, Secretary

**BUREAU OF MINES** Robert C. Horton, Director Library of Congress Cataloging in Publication Data:

Stuve, J. M

Thermodynamic properties of CoS<sub>0.89</sub>, CoS<sub>1.33</sub>, and CoS<sub>2</sub>.

(Report of investigations ; 8994) Bibliography: p. 10-11,

Supt. of Docs. no.: I 28:23: 8994.

1. Cobalt sulphide-Thermal properties. I. Beyer, R. P. (Richard P.). II. Brown, R. R. (Robert R.). III. Title. IV. Series: Report of investigations (United States, Bureau of Mines); 8994. 1141-10

TN 23.U43 [QD 18 1.C6] 622s [546', 623569] 85-600083

# CONTENTS

.

| Abstract                                | 1  |
|-----------------------------------------|----|
| Introduction                            | 2  |
| Materials                               | 2  |
| Low-temperature calorimetry and results | 3  |
| Solution calorimetry and results        | 7  |
| Discussion                              | 10 |
| References                              | 10 |

# ILLUSTRATION

| 1. | Low-temperature | heat | capacities | for | CoS <sub>0.89</sub> , | CoS1.33, | and | CoS <sub>2</sub> | 3 |
|----|-----------------|------|------------|-----|-----------------------|----------|-----|------------------|---|
|----|-----------------|------|------------|-----|-----------------------|----------|-----|------------------|---|

## TABLES

| 1. | Experimental low-temperature heat capacities of CoS <sub>0.89</sub> | 4 |
|----|---------------------------------------------------------------------|---|
| 2. | Experimental low-temperature heat capacities of CoS1.33             | 4 |
| 3. | Experimental low-temperature heat capacities of CoS2                | 5 |
| 4. | Thermodynamic functions of CoS <sub>0.89</sub>                      | 6 |
| 5. | Thermodynamic functions of CoS <sub>1,33</sub>                      | 7 |
| 6. | Thermodynamic functions of CoS <sub>2</sub>                         | 8 |
| 7. | Calorimetric reaction scheme for CoS <sub>0.89</sub> at 298 K       | 9 |
| 8. | Calorimetric reaction scheme for $CoS_{0,89}$ using Co at 298 K     | 9 |

# Page

#### UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT thermochemical calorie kca1 kilocalorie ca1 $cal \cdot mol^{-1}$ kcal•mol<sup>-1</sup> kilocalorie per mole calorie per mole cal\*mo1<sup>-1</sup>•K<sup>-1</sup> calorie per mole per molmole (gram basis) kelvin percent pct gram g wt pct weight percent hour h kelvin K

|                       | OTHER ABBREVIATIONS AND SYMBO                 | OLS USED IN       | THIS REPORT                               |
|-----------------------|-----------------------------------------------|-------------------|-------------------------------------------|
| o                     | standard reference state<br>(superscript)     | G <sub>(T)</sub>  | Gibbs energy function<br>at T             |
| ∆H°                   | standard enthalpy change                      | R                 | Gas constant                              |
| ∆Hf <mark>2</mark> 98 | standard enthalpy of<br>formation at 298.15 K | H° <sub>(T)</sub> | Enthalpy function at T                    |
| <b>0</b> °            |                                               | <b>ln</b>         | logarithm using base e                    |
| υ <sub>p</sub>        | constant pressure                             | (c)               | crystalline or polycrys-<br>talline state |
| Т                     | temperature                                   |                   |                                           |
| S <sub>298</sub>      | Absolute entropy at<br>298.15 K               |                   |                                           |
|                       |                                               |                   |                                           |

### THERMODYNAMIC PROPERTIES OF CoS<sub>0.89</sub>, CoS<sub>1.33</sub>, AND CoS<sub>2</sub>

By J. M. Stuve, <sup>1</sup> R. P. Beyer, <sup>2</sup> and R. R. Brown<sup>1</sup>

#### ABSTRACT

In this Bureau of Mines investigation, the low-temperature heat capacities of polycrystalline phases corresponding to the sulfide compounds  $\cos_{0.89}$ ,  $\cos_{1.33}$ , and  $\cos_2$  were measured by adiabatic calorimetry within the nominal temperature range 5 to 300 K. The derived absolute entropies  $S_{298}^{\circ}$  were 10.36±0.02, 12.96±0.03, and 16.31±0.03 cal·mol<sup>-1</sup>·K<sup>-1</sup>, respectively, assuming third-law behavior. In addition, the standard enthalpy of formation  $\Delta Hf_{298}^{\circ}$  of  $\cos_{0.89}$  was determined by bromine solution calorimetry. The derived value of  $\Delta Hf_{298}^{\circ}$  was -50.63±2.1 kcal·mol<sup>-1</sup>, based on the  $\Delta Hf_{298}^{\circ}$  of  $\cos_{0.89}$  this result is considerably more negative than previously published formation values based on high-temperature gas equilibrium studies.

<sup>1</sup>Research chemist. <sup>2</sup>Chemical engineer. Albany Research Center, Bureau of Mines, Albany, OR. This Bureau of Mines investigation is part of an integrated program to provide basic metallurgical data to further the efficient and economic utilization of mineral resources.

The cobalt-sulfur system provides a complex series of sulfides, some of which are metastable, nonstoichiometric phases at ambient temperatures. Chen and Chang  $(1)^3$  have recently studied the hightemperature phase relationships in the cobalt-sulfur system. There are three principal stable sulfide phases at ambient temperature, corresponding to the approximate ideal compositions of CoS0,89, CoS<sub>1.33</sub>, and CoS<sub>2</sub>, respectively. Chen and Chang found that each of these compounds has a homogeneous range in the vicinity of ±1 wt pct S, depending on the sulfur activity. The  $CoS_{0.89}$  phase is approximately 1,103±5 stable to К,  $\cos_{1,33}$  to 943 K, and  $\cos_2$  to 1,299±10 K. Most of the thermodynamic data avail-

able for the transition metal sulfides have been derived from solid-gas equilibrium studies at high temperatures. Among the more extensive of these are investigations by Rosenqvist (2), Alcock (3),

MATERIALS

Polycrystalline CoS<sub>0.89</sub> and CoS<sub>2</sub> were prepared by reaction of precisely measured stoichiometric amounts of sulfur with high-purity, 99.9+ pct cobalt powder or cobalt sulfides of intermediate composition in sealed silica tubes. Oxygenfree cobalt powder was obtained by treating a commercial metal powder of Co-CoOv with hydrogen at 1,250 K. The sulfur was 99.999+ pct pure and was ground to a fine powder prior to mixing with the metal or sulfides. The tubes containing the reactant mixtures were purged with argon gas and evacuated prior to sealing.

The  $CoS_{0,89}$  was prepared in two lots (100 and 144 g) by the following Kolbina (4), and Laffitte (5). No solution calorimetric investigations of the formation of  $\cos_{0.89}$  could be found in the scientific literature.

Measurement of mid-temperature range heat capacities of  $\cos_{1.33}$  has been previously reported by Schchelkotunov (6). Ogawa (7) and Waki (8) have reported segments of the low-temperature heat capacity data for  $\cos_2$ . Tabular data were not given in these reports; therefore, evaluation of their results in relation to the present investigation can only be approximate, owing to the uncertainties in interpolation from their figures and graphs.

No low-temperature heat capacity data were found for  $CoS_{0.89}$ .

This investigation was originally planned to determine the formation enthalpies of  $\cos_{1.33}$  and  $\cos_2$  in addition to  $\cos_{0.89}$ . High-purity crystalline samples of these materials were prepared by pyrochemical methods; however, preliminary solution trials of the first two sulfides were unsuccessful owing to their very low rates of dissolution and reaction.

#### MATERTAL

The cobalt-sulfur procedure: mixture was initially heated to about 600 K to maintain a safe sulfur vapor pressure until most of the reaction was completed. The temperature was gradually increased to 775 K, for a total heating time of 120 Upon cooling, there was no evidence h. of free sulfur, indicating complete combination of the reactants. The silica tube was opened in an argon atmosphere dry box, and the sintered gray-black mass was ground to minus 100 mesh. The powder was transferred to a new silica tube. which was then sealed and heated for a final period of 120 h at 775 K. The final product was reground to a fine powder for calorimetric measurements. The X-ray diffraction pattern matched the pattern given on Powder Diffraction File (PDF) card 19-364 for cubic CoS<sub>0.89</sub>.

<sup>&</sup>lt;sup>3</sup>Underlined numbers in parentheses refer to items in the list of references at the end of this report.

CoS<sub>1,33</sub> was prepared in a manner similar to that used for  $CoS_{0.89}$ . A stoichiometric quantity of cobalt and sulfur was initially reacted at 600 K. The temperature was increased to 785 K over a period of 2 days and held at this level for 42 h. The sample was ground and reheated for 115 h at 700 K. The product was determined to be single-phase polycrystalline cubic CoS1.33. The X-rav diffraction pattern matched the pattern given on PDF card 19-367.

 $\cos_2$  was prepared by reaction of a mixture of CoS<sub>1.33</sub> and CoS<sub>1.87</sub> with the stoichiometric amount of sulfur to adjust the composition to  $CoS_2$ . The mixture was heated for 55 h at 573 K, 100 h at 758 K, 100 h at 710 K, 18 h at 873 K, and finally for 70 h at 673 K. The final heating was required to maximize the CoS<sub>2</sub> stoichiometry. The silica tube was removed and rapidly cooled on the tip end so that a trace of unreacted or equilibrium sulfur vapor would collect there. Chemical analysis indicated the composition to be  $\cos_{1,973}$ , and the X-ray diffraction pattern matched the pattern given on PDF card 19-362 for cubic  $CoS_2(c)$ .

Emission spectrographic analysis of the sulfides indicated metallic impurities of nickel at <0.1 pct and aluminum, copper, iron, and silicon at <0.01-pct levels.

High-purity CoO was prepared from an initial mixture of  $Co_3O_4$  and CoO made by oxidation of cobalt metal powder in a platinum boat at 1,275 K. This material ground and given a final heating in was oxygen at 1,375 K for 2 h, cooled to 1,275 K, purged with high-purity argon, and quenched rapidly to ambient room temperature to prevent formation of  $Co_3O_4$  . X-ray analysis of the resulting powder indicated only the presence of CoO(c) phase. Spectrographic analysis did not detect any metallic elements other than



FIGURE 1. - Low-temperature heat capacities for  $CoS_{0.89}$ ,  $CoS_{1.33}$ , and  $CoS_2$ .

aluminum, nickel, and silicon, all at the 0.005-pct level.

Cobalt metal for solution measurements was prepared at the Bureau in the form of high-purity electrolytic sheet. Strips were cut into convenient sizes without further treatment. No metallic impurities were detected by spectroscopy in this metal other than nickel, which was at the 0.05-pct level.

The solvent of 2.675 molal HBr and 1.319 molal Br<sub>2</sub> was prepared from distilled water and commercial analyticalgrade reagents.

#### LOW-TEMPERATURE CALORIMETRY AND RESULTS

The automated adiabatic calorimeter used to measure the heat capacities has been described previously by Beyer (9). For  $\cos_{0.89}(c)$ , a sample mass of 167.6867 g was used along with  $1.5 \times 10^{-4}$  mol He. For  $\cos_{1.33}(c)$ , a sample of 194.4954 g was used with  $1.3 \times 10^{-4}$  mol He. The sample of  $\cos_2(c)$  was 187.150 g with 1.3  $\times 10^{-4}$  mol He.

The experimental heat capacities for  $\cos_{0.89}$ ,  $\cos_{1.33}$ , and  $\cos_2$  are shown in figure 1 and listed chronologically in

tables 1, 2, and 3. The temperature increment for each measurement can be calculated from temperatures tabulated for adjacent measurements. The overall uncertainty of the measurements was estimated to be  $\pm 2$  pct from 5 to 15 K,  $\pm 1$  pct from 15 to 50 K,  $\pm 0.2$  pct from 50 to 200 K, and  $\pm 0.1$  pct from 200 to 300 K.

TABLE 1. - Experimental low-temperature heat capacities of CoS<sub>0.89</sub>

| T. K  | C°.           | T. K   | C°,           |
|-------|---------------|--------|---------------|
| -,    | cal.mo1-1.K-1 |        | cal•mo1-1•K-1 |
|       | SERIES I      | S      | ERIES II      |
| 5.01  | 0.003         | 80.65  | 3.339         |
| 5.53  | .003          | 87.61  | 3.778         |
| 6.01  | .004          | 95.30  | 4.247         |
| 6.62  | .004          | 103.74 | 4.742         |
| 7.25  | .009          | 112.65 | 5.236         |
| 7.92  | .010          | 121.69 | 5.710         |
| 8.69  | .013          | 130.83 | 6.164         |
| 9.59  | .016          | 140.06 | 6.580         |
| 10.58 | .021          | 149.36 | 6.968         |
| 11.66 | .028          | 158.71 | 7.329         |
| 12.87 | .037          | 168.12 | 7.655         |
| 14.18 | .049          | 177.49 | 7.963         |
| 15.64 | .061          | 186.68 | 8.240         |
| 17.20 | •082          | 195.65 | 8.482         |
| 18.97 | .115          | 204.43 | 8.701         |
| 20.88 | .150          | 213.03 | 8.923         |
| 22.91 | .195          | 221.50 | 9.106         |
| 23.54 | .216          | 229.84 | 9.279         |
| 25.41 | .269          | 238.06 | 9.435         |
| 27.37 | .332          | 246.19 | 9.587         |
| 29.52 | •406          | 254.23 | 9.733         |
| 31.83 | .496          | 262.18 | 9.858         |
| 34.34 | .603          | 270.07 | 9.986         |
| 37.06 | .729          | 277.89 | 10.096        |
| 40.02 | .8/3          | 285.00 | 10.201        |
| 43.39 | 1.050         | 293.37 | 10.289        |
| 47.06 | 1.254         | 301.04 | 10.339        |
| 50.91 | 1.4/0         |        |               |
| 55.12 | 1.720         |        |               |
| 59.72 | 2.018         |        |               |
| 04./0 | 2.328         |        |               |
| 70.20 | 2.090         |        |               |
| /0.29 | 3.002         |        |               |
| 82.91 | 3.480         |        |               |
| 90.13 | 3.920         | I      |               |

TABLE 2. - Experimental low-temperature heat capacities of CoS<sub>1.33</sub>

1

| Т, К           | $C_p^{\circ}$ , | Т, К                        | $C_{p}^{\circ}$ , |  |  |  |
|----------------|-----------------|-----------------------------|-------------------|--|--|--|
|                | SERIES T        | SERIES IV                   |                   |  |  |  |
| 59.40          | 2.579           | 157.41                      | 9.429             |  |  |  |
| 62.40          | 2.806           | 162.60                      | 9.663             |  |  |  |
| 72.92          | 3.669           | 167.69                      | 9.871             |  |  |  |
| 78.64          | 4.156           | 175.77                      | 10.220            |  |  |  |
| 85.31          | 4.726           | 178.80                      | 10.311            |  |  |  |
| SI             | ERIES II        | 183.93                      | 10.489            |  |  |  |
| 4.93           | 0.010           | 189.02                      | 10.666            |  |  |  |
| 6.83           | .015            | 5                           | SERIES V          |  |  |  |
| 9.96           | .033            | 183.84                      | 10.495            |  |  |  |
| 11.54          | .047            | 191.01                      | 10.728            |  |  |  |
| 12.45          | .056            | 198.04                      | 10.949            |  |  |  |
| 13.77          | .070            | 205.00                      | 11.150            |  |  |  |
| 15.19          | .088            | 211.78                      | 11.341            |  |  |  |
| 16.77          | .111            | 224.09                      | 11.655            |  |  |  |
| 18.49          | .143            | 228.55                      | 11.780            |  |  |  |
| 20.10          | .175            | 232.85                      | 11.859            |  |  |  |
| 21.61          | .217            | 239.40                      | 12.006            |  |  |  |
| 23.26          | .264            | 245.89                      | 12.135            |  |  |  |
| 25.04          | .321            | 252.34                      | 12.242            |  |  |  |
| 28.83          | .470            | 258.73                      | 12.366            |  |  |  |
| 36.59          | .862            | SI                          | ERIES VI          |  |  |  |
| 34.93          | .801            | 257.61                      | 12.349            |  |  |  |
| 37.36          | .921            | 263.97                      | 12.440            |  |  |  |
| 40.40          | 1.114           | 267.52                      | 12.518            |  |  |  |
| 43.65          | 1.329           | 271.05                      | 12.587            |  |  |  |
| 47.13          | 1.585           | 278.14                      | 12.694            |  |  |  |
| 50 <b>.9</b> 0 | 1.861           | 284.38                      | 12.777            |  |  |  |
| 54.99          | 2.216           | 290.58                      | 12.855            |  |  |  |
| 75.92          | 3.927           | 296.76                      | 12.949            |  |  |  |
| 81.52          | 4.404           | 302.92                      | 13.022            |  |  |  |
| SI             | ERIES III       | SERIES VII<br>235 58 11 013 |                   |  |  |  |
| 60.50          | 2.634           | 235.58                      | 11.913            |  |  |  |
| 65.07          | 3.016           | 241.22                      | 12.039            |  |  |  |
| /0.95          | 3.498           | 247.00                      | 12+1/2            |  |  |  |
| 11.31          | 4.048           | 255.09                      | 12+2/1            |  |  |  |
| 84.43          | 4.044           | 200.14                      | 12.392            |  |  |  |
| 94.95          | 5.050           | 200.42                      | 12.499            |  |  |  |
| 110.11         | 5.959           | 272.72                      | 12.601            |  |  |  |
| 110.11         | 0.070           | 2/0.90                      | 12.091            |  |  |  |
| 120 22         | 7 0 2 2         | 203.22                      | 12.881            |  |  |  |
| 138 20         | 8/69            | 291.42                      | 12.001            |  |  |  |
| 1/3 03         | 0.402<br>g 70/  |                             |                   |  |  |  |
| 147 50         | 0.704<br>8.0/8  |                             |                   |  |  |  |
| 152 20         | Q 101           |                             |                   |  |  |  |
| 157 25         | 9.191           |                             |                   |  |  |  |
| 162 /1         | 9.659           |                             |                   |  |  |  |
| 102+41         | 7.039           | L                           |                   |  |  |  |

| Т, К     | $C_p^{\circ}$ , | Т, К             | $C_{p}^{o}$ , | Т, К                             | $C_p^{\circ}$ ,<br>cal·mol <sup>-1</sup> ·K <sup>-1</sup> | Т, К  | $C_p^{\circ}$ ,<br>cal•mol <sup>-1</sup> •K <sup>-1</sup> |
|----------|-----------------|------------------|---------------|----------------------------------|-----------------------------------------------------------|-------|-----------------------------------------------------------|
| <u></u>  | SERIES T        | SERIES II        |               | SI                               | RIES III                                                  | SH    | ERIES IV                                                  |
| 85.28    | 5.541           | 63.92            | 3.051         | 83.01                            | 5.260                                                     | 4.99  | 0.021                                                     |
| 89.85    | 6.100           | 67.58            | 3.445         | 85.30                            | 5.568                                                     | 5.21  | •025                                                      |
| 97.69    | 7.120           | 73.25            | 4.094         | 86.22                            | 5.646                                                     | 5.70  | •028                                                      |
| 105.97   | 8.309           | 79.34            | 4.827         | 87.16                            | 5.778                                                     | 6.34  | .032                                                      |
| 133.09   | 10.071          | 86.11            | 5.633         | 88.09                            | 5.908                                                     | 7.08  | •036                                                      |
| 142.35   | 10.714          | 87.71            | 5.836         | 89.02                            | 5.991                                                     | 7.85  | •043                                                      |
| 151.18   | 11.304          | 89.56            | 6.062         | 89.96                            | 6.104                                                     | 8.71  | •050                                                      |
| 159.66   | 11.826          | 91.40            | 6.311         | 90.89                            | 6.219                                                     | 9.68  | .057                                                      |
| 167.86   | 12.302          | 93.24            | 6.538         | 91.82                            | 6.322                                                     | 10.75 | .005                                                      |
| 175.81   | 12.717          | 95.09            | 6.776         | 92.76                            | 6.46/                                                     | 11.93 | •075                                                      |
| 183.56   | 13.092          | 96.94            | 7.012         | 93.69                            | 6.613                                                     | 13.23 | •000                                                      |
| 191.15   | 13.422          | 98.79            | 7.251         | 94.63                            | 6./21                                                     | 14.05 | .102                                                      |
| 198.59   | 13.730          | 100.64           | 7.498         | 95.56                            | 6.828                                                     | 10.21 | •121                                                      |
| 205.89   | 14.022          | 102.50           | /./08         | 90.00                            | 0.937                                                     | 10 90 | •144                                                      |
| 213.08   | 14.258          | 104.35           | 8.031         | 97.44                            | 7.201                                                     | 21 01 | •171                                                      |
| 220.17   | 14.501          | 106.20           | 8.33/         | 98.30                            | 7.201                                                     | 21.01 | •207                                                      |
| 22/.1/   | 14./3/          | 108.06           | 8.044         | 99.32                            | 7.53                                                      | 25.69 | 301                                                       |
| 234.10   | 14.931          | 111 76           | 9.014         | 100.23                           | 7.560                                                     | 27.36 | -351                                                      |
| 240.95   | 15.107          | 112 56           | 9.550         | $101 \cdot 19$<br>$102 \cdot 12$ | 7.726                                                     | 29.48 | .421                                                      |
| 24/ ./ 3 | 15.505          | 115.50<br>115.62 | 10.110        | 102.12                           | 7.840                                                     | 33.28 | .565                                                      |
| 204.40   | 15 600          | 117 35           | 9.901         | 104.00                           | 7.968                                                     | 35.06 | .652                                                      |
| 201.14   | 15 752          | 119.26           | 9,987         | 104.93                           | 8,126                                                     | 37.80 | .797                                                      |
| 20/0//   | 15,903          | 121.13           | 10.323        | 105.87                           | 8.295                                                     | 40.69 | •974                                                      |
| 280 89   | 16-002          | 124.87           | 9.783         | 106.80                           | 8.393                                                     | 43.83 | 1.193                                                     |
| 287.40   | 16.135          | 126.65           | 9.599         | 107.74                           | 8.554                                                     | 47.21 | 1.449                                                     |
| 293.88   | 16.241          | 128.55           | 9.749         | 108.67                           | 8.721                                                     | 50.88 | 1.754                                                     |
| 300.33   | 16.348          | 130.44           | 9.866         | 110.79                           | 9.220                                                     | 54.86 | 2.114                                                     |
| •••••    |                 | 132.32           | 10.010        | 111.98                           | 9.586                                                     | 59.19 | 2.561                                                     |
|          |                 | 134.21           | 10.155        | 112.90                           | 9.878                                                     | 63.90 | 3.033                                                     |
|          |                 | 136.09           | 10.266        | 113.82                           | 10.242                                                    |       |                                                           |
|          |                 | 137.98           | 10.388        | 114.75                           | 10.305                                                    |       |                                                           |
|          |                 | 139.86           | 10.546        | 115.71                           | 9.955                                                     |       |                                                           |
|          |                 | 141.75           | 10.664        | 116.67                           | 9.840                                                     |       |                                                           |
|          |                 | 143.63           | 10.827        | 117.61                           | 9.859                                                     |       |                                                           |
|          |                 | 145.52           | 10.928        | 118.55                           | 9.872                                                     |       |                                                           |
|          |                 | 147.41           | 11.047        | 119.49                           | 9.986                                                     |       |                                                           |
|          |                 | 149.30           | 11.161        | 120.43                           | 10.149                                                    |       |                                                           |
|          |                 | 151.19           | 11.281        | 121.3/                           | 10.316                                                    |       |                                                           |
|          |                 |                  |               | 122.29                           | 10.740                                                    |       |                                                           |
|          |                 |                  |               | 123.27                           | 9.531                                                     |       |                                                           |
|          |                 |                  |               | 124+20                           | 0 500                                                     |       |                                                           |
|          |                 |                  |               | 126 15                           | 9.544                                                     |       |                                                           |
|          |                 |                  |               | 120.13                           | 9.603                                                     |       |                                                           |
|          |                 |                  |               | 128.03                           | 9,705                                                     |       |                                                           |
|          |                 |                  |               | 128.98                           | 9.727                                                     |       |                                                           |
|          |                 |                  |               | 129.92                           | 9.816                                                     |       |                                                           |
|          |                 |                  |               | 130.86                           | 9.842                                                     |       |                                                           |

TABLE 3. - Experimental low-temperature heat capacities of  $\cos_2$ 

.

The heat capacities for all three sulfides were smoothed using a curve-fitting computer program developed by Justice (10) to give the values of  $C_p^{\circ}$ ,  $[S^{\circ}(T) - S^{\circ}(0)]$ , -  $[G^{\circ}(T) - H^{\circ}(0)]/T$ , and  $H^{\circ}(T) - H^{\circ}(0)$ . These values are listed in tables 4, 5, and 6 for  $CoS_{0.89}$ ,  $CoS_{1.33}$ , and  $CoS_2$ , respectively. The heat capacities for all three sulfides were graphically extrapolated from the lowest temperatures of measurement to 0 K using a  $C_p^o/T$  against  $T^2$  plot.

A nonisothermal transition was observed for  $\cos_2$  over the range 110 to 130 K. For this region, the calorimeter was operated in such a manner as to span the entire transition region in one measurement. The enthalpy of transition was calcaulated as 279 cal·mol<sup>-1</sup>.

| т, к       | $C_{\rm p}^{\rm o}$ , | $S^{\circ}(T)-S^{\circ}(0),$ | $-[G^{\circ}(T)-H^{\circ}(O)]/T$ ,     | $H^{\circ}(T)-H^{\circ}(O),$ |
|------------|-----------------------|------------------------------|----------------------------------------|------------------------------|
|            | cal•mo1-1•K-1         | cal•mo1-1•K-1                | cal•mo1 <sup>-1</sup> •K <sup>-1</sup> | kcal•mo1 <sup>-1</sup>       |
| 5          | 0.003                 | 0.001                        | 0.000                                  | 0.000                        |
| 10         | .019                  | .007                         | .002                                   | .000                         |
| 15         | .055                  | .020                         | .005                                   | .000                         |
| 20         | .133                  | •046                         | .012                                   | .001                         |
| 25         | .257                  | •088                         | .023                                   | .002                         |
| 30         | .424                  | .149                         | •038                                   | .003                         |
| 35         | .632                  | •229                         | •060                                   | .006                         |
| 40         | .873                  | .329                         | .087                                   | .010                         |
| 45         | 1.138                 | .447                         | .120                                   | .015                         |
| 50         | 1.421                 | •582                         | .160                                   | .021                         |
| <b>6</b> 0 | 2.036                 | •894                         | •255                                   | .038                         |
| 70         | 2.684                 | 1.257                        | .372                                   | .062                         |
| 80         | 3.316                 | 1.657                        | •507                                   | .092                         |
| 90         | 3.929                 | 2.083                        | •658                                   | .128                         |
| 100        | 4.517                 | 2.528                        | .823                                   | .170                         |
| 110        | 5.076                 | 2.984                        | .999                                   | .218                         |
| 120        | 5.603                 | 3.449                        | 1.183                                  | .272                         |
| 130        | 6.097                 | 3.197                        | 1.376                                  | .330                         |
| 140        | 6.557                 | 4.386                        | 1.574                                  | .394                         |
| 150        | 6.982                 | 4.853                        | 1.777                                  | .461                         |
| 160        | 7.372                 | 5.316                        | 1.984                                  | •533                         |
| 170        | 7.730                 | 5.774                        | 2.193                                  | .609                         |
| 180        | 8.055                 | 6.225                        | 2.405                                  | •688                         |
| 190        | 8.351                 | 6.669                        | 2.618                                  | .770                         |
| 200        | 8.619                 | 7.104                        | 2.831                                  | •855                         |
| 210        | 8.862                 | 7.531                        | 3.045                                  | .942                         |
| 220        | 9.083                 | 7.948                        | 3.258                                  | 1.032                        |
| 230        | 9.285                 | 8.356                        | 3.471                                  | 1.124                        |
| 240        | 9.471                 | 8.756                        | 3.683                                  | 1.217                        |
| 250        | 9.644                 | 9.146                        | 3.894                                  | 1.313                        |
| 260        | 9.805                 | 9.527                        | 4.103                                  | 1.410                        |
| 270        | 9.959                 | 9.900                        | 4.311                                  | 1.509                        |
| 273.15     | 10.006                | 10.016                       | 4.376                                  | 1.541                        |
| 280        | 10.107                | 10.265                       | 4.517                                  | 1.609                        |
| 290        | 10.250                | 10.622                       | 4.721                                  | 1.711                        |
| 298.15     | 10.364                | 10.908                       | 4.887                                  | 1.795                        |
| 300        | 10.387                | 10.972                       | 4.924                                  | 1.814                        |

TABLE 4. - Thermodynamic functions of  $CoS_{0.89}$ 

| Т, К         | C <sub>o</sub> ,                       | $S^{\circ}(T)-S^{\circ}(0),$           | $-[G^{\circ}(T)-H^{\circ}(O)]/T,$      | $H^{\circ}(T)-H^{\circ}(0),$ |
|--------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------|
|              | cal•mol <sup>-1</sup> •K <sup>-1</sup> | cal·mol <sup>-1</sup> ·K <sup>-1</sup> | cal•mol <sup>-1</sup> •K <sup>-1</sup> | kcal•mol-1                   |
| 5            | 0.010                                  | 0.009                                  | 0.004                                  | 0.000                        |
| 10           | •034                                   | •022                                   | .010                                   | .000                         |
| 15           | •085                                   | •044                                   | .017                                   | .000                         |
| 20           | •174                                   | •080                                   | .028                                   | .001                         |
| 25           | .320                                   | .133                                   | .043                                   | .002                         |
| 30           | •527                                   | .209                                   | .064                                   | .004                         |
| 35           | .786                                   | .309                                   | .092                                   | .008                         |
| 40           | 1.091                                  | •433                                   | .126                                   | .012                         |
| 45           | 1.434                                  | •581                                   | .168                                   | .019                         |
| 50           | 1.805                                  | .751                                   | .218                                   | .027                         |
| 60           | 2.607                                  | 1.150                                  | .339                                   | .049                         |
| 70           | 3.438                                  | 1.614                                  | •488                                   | .079                         |
| 80           | 4.280                                  | 2.129                                  | •660                                   | .118                         |
| <b>9</b> 0   | 5.109                                  | 2.681                                  | .853                                   | .164                         |
| 100          | 5.903                                  | 3.261                                  | 1.065                                  | •220                         |
| 110          | 6.650                                  | 3.859                                  | 1.292                                  | •282                         |
| 120          | 7.344                                  | 4.467                                  | 1.531                                  | .352                         |
| 130          | 7.981                                  | 5.081                                  | 1.780                                  | .429                         |
| 140          | 8.559                                  | 5.694                                  | 2.038                                  | •512                         |
| 150          | 9.082                                  | 6.302                                  | 2.302                                  | •600                         |
| 160          | 9.553                                  | 6.904                                  | 2.571                                  | •693                         |
| 170          | 9.976                                  | 7.496                                  | 2.843                                  | .791                         |
| 180          | 10.357                                 | 8.077                                  | 3.118                                  | .893                         |
| 1 <b>9</b> 0 | 10.700                                 | 8.646                                  | 3.394                                  | .998                         |
| 200          | 11.011                                 | 9.203                                  | 3.671                                  | 1.107                        |
| 210          | 11.294                                 | 9.747                                  | 3.947                                  | 1.218                        |
| 220          | 11.553                                 | 10.279                                 | 4.223                                  | 1.332                        |
| 230          | 11.790                                 | 10.798                                 | 4.497                                  | 1.449                        |
| 240          | 12.008                                 | 11.304                                 | 4.771                                  | 1.568                        |
| 250          | 12.209                                 | 11.799                                 | 5.042                                  | 1.689                        |
| 260          | 12.393                                 | 12.281                                 | 5.311                                  | 1.812                        |
| 270          | 12.561                                 | 12.752                                 | 5.578                                  | 1.937                        |
| 273.15       | 12.611                                 | 12.898                                 | 5.662                                  | 1.977                        |
| 280          | 12.714                                 | 13.212                                 | 5.842                                  | 2.063                        |
| 290          | 12.853                                 | 13.660                                 | 6.104                                  | 2.191                        |
| 298.15       | 12.958                                 | 14.018                                 | 6.316                                  | 2.296                        |
| 300          | 12.982                                 | 14.098                                 | 6.363                                  | 2.320                        |

TABLE 5. - Thermodynamic functions of  $CoS_{1,33}$ 

#### SOLUTION CALORIMETRY AND RESULTS

Enthalpy of solution measurements were obtained using an adiabatic solution calorimeter previously described by Stuve (11-12). The calorimetric sequence of solution reactions used to derive  $\Delta Hf^{\circ}$  of  $\cos_{0.89}(c)$  is given in table 7. The actual enthalpy measurements were based on dissolution of 0.002 mol of  $\cos_{0.89}(c)$ and respective stoichiometric quantities of S(c) (orthorhombic), CoO(c), and  $H_2O(l)$ . The acidic bromine solvent used for each solution measurement consisted of 738.3 g of 2.675-molal HBr and 155.6 g liquid bromine. Solution measurements were done at 315±0.5 K. Corrections to 298 K were applied by estimation of  $\Delta C_p$  of reactions 1, 2, and 3.

| Т. К         | C°,                                    | $S^{\circ}(T)-S^{\circ}(0)$ ,          | $-[G^{\circ}(T)-H^{\circ}(0)]/T$ ,     | $H^{\circ}(T)-H^{\circ}(0),$ |
|--------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------|
|              | cal•mo1 <sup>-1</sup> •K <sup>-1</sup> | cal•mo1 <sup>-1</sup> •K <sup>-1</sup> | cal•mo1 <sup>-1</sup> •K <sup>-1</sup> | kcal·mo1 <sup>-1</sup>       |
| 5            | 0.024                                  | 0.022                                  | 0.011                                  | 0.000                        |
| 10           | .059                                   | •049                                   | .023                                   | .000                         |
| 15           | .107                                   | .082                                   | .037                                   | .001                         |
| 20           | .176                                   | .121                                   | •053                                   | •001                         |
| 25           | .279                                   | .171                                   | .071                                   | •002                         |
| 30           | .435                                   | .234                                   | .093                                   | .004                         |
| 35           | •651                                   | .317                                   | .119                                   | .007                         |
| 40           | .931                                   | .421                                   | .150                                   | •011                         |
| 45           | 1.276                                  | •550                                   | •187                                   | .016                         |
| 50           | 1.679                                  | .705                                   | •231                                   | .024                         |
| 60           | 2.629                                  | 1.093                                  | .341                                   | •045                         |
| 70           | 3.728                                  | 1.579                                  | •482                                   | .077                         |
| 80           | 4.901                                  | 2.153                                  | .654                                   | .120                         |
| <b>9</b> 0   | 6.124                                  | 2.800                                  | •856                                   | .175                         |
| 100          | 7.420                                  | 3.512                                  | 1.085                                  | .243                         |
| 1110         | 9.027                                  | 4.288                                  | 1.341                                  | .324                         |
| 1130         | 9.831                                  | 6.709                                  | 2.070                                  | .603                         |
| 140          | 10.546                                 | 7.464                                  | 2.428                                  | .705                         |
| 150          | 11.222                                 | 8.215                                  | 2.789                                  | •814                         |
| 160          | 11.846                                 | 8.959                                  | 3.152                                  | .929                         |
| 170          | 12.412                                 | 9.695                                  | 3.515                                  | 1.051                        |
| 180          | 12.921                                 | 10.419                                 | 3.878                                  | 1.177                        |
| 1 <b>9</b> 0 | 13.378                                 | 11.130                                 | 4.241                                  | 1.309                        |
| 200          | 13.789                                 | 11.827                                 | 4.603                                  | 1.445                        |
| 210          | 14.161                                 | 12.509                                 | 4.964                                  | 1.585                        |
| 220          | 14.499                                 | 13.176                                 | 5.322                                  | 1.728                        |
| 230          | 14.808                                 | 13.827                                 | 5.677                                  | 1.874                        |
| 240          | 15.090                                 | 14.463                                 | 6.030                                  | 2.024                        |
| 250          | 15.349                                 | 15.085                                 | 6.380                                  | 2.176                        |
| 260          | 15.585                                 | 15.691                                 | 6.727                                  | 2.331                        |
| 270          | 15.800                                 | 16.284                                 | 7.070                                  | 2.488                        |
| 273.15       | 15.863                                 | 16.467                                 | 7.177                                  | 2.538                        |
| 280          | 15.996                                 | 16.862                                 | 7.409                                  | 2.647                        |
| 290          | 16.176                                 | 17.426                                 | 7.745                                  | 2.808                        |
| 298.15       | 16.313                                 | 17.876                                 | 8.016                                  | 2.940                        |
| 300          | 16.343                                 | 17.977                                 | 8.077                                  | 2 <b>.97</b> 0               |

TABLE 6. - Thermodynamic functions of CoS<sub>2</sub>

<sup>1</sup>Nonisothermal transition.

Experimental results for the enthalpies of solution of  $\cos_{0.89}(c)$ ,  $\cos(c)$ , and S(c) are summarized in reactions 1, 2, and 3 of table 7, respectively. The heat of dilution of  $H_2O(\ell)$  in the solvent, represented by reaction 6, was estimated from data by Wagman (13). Enthalpy of formation data for reactions 5, 7, and 9 were also taken from Wagman. The CoO(c) formation data of reaction 8 was selected by Cyr (14) based on a recent critical evaluation of available values.

The  $\Delta Hf^{\circ}$  of  $CoS_{0.89}(c)$ , represented by reaction 10, is equal to the sum of enthalpies of reactions 1 through 9, as written. The uncertainties of reactions 1, 2, and 3 were calculated as twice the standard deviation of the mean, according to Rossini's recommendations (15). The overall uncertainty in reaction 10 is the

ķ

square root of the sum of the squares of the uncertainties of reactions 1 through 9.

The calorimetric reaction scheme given in table 8 is based on the solution of cobalt metal. This scheme is less complex than the one using CoO(c); however, the two methods agree within the limits of experimental error. A slight pressure increase in the reaction vessel was noted on disassembly following the solution of cobalt metal. Since cobalt may be oxidized by hydrogen ions as well as tribromide ions, the pressure increase noted was probably caused by residual hydrogen gas. From thermodynamic considerations, hydrogen gas would be readily oxidized by the tribromide present; however, the kinetics of this reaction are relatively slow without a suitable catalyst. The accuracy of scheme 1, based on the oxide (table 7), is preferred because of the uncertainty in assuming that possible hydrogen formed is completely oxidized in reaction 2 of table 8.

| TABLE | 7. | - | Calorimetric | reaction | scheme | for | CoS0.89 | ,(c) | ) at | 298 | K |
|-------|----|---|--------------|----------|--------|-----|---------|------|------|-----|---|
|-------|----|---|--------------|----------|--------|-----|---------|------|------|-----|---|

| Reaction <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ∆H°,                                                       | Uncertainty,                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kca1                                                       | kcal                                            |
| (1) $\operatorname{Co}^{++} + 7.112\operatorname{H}^{+} + 11\operatorname{Br}^{-} + 0.89\operatorname{SO}_{4}^{\mp} = \operatorname{CoS}_{0.89}(c) + 3.667\operatorname{Br}_{5}^{\mp} + 3.556\operatorname{H}_{2}O$ .<br>(2) $\operatorname{CoO}(c) + 2\operatorname{H}^{+} = \operatorname{Co}^{++} + \operatorname{H}_{2}O$ .<br>(3) $0.89\operatorname{S}(c) + 2.667\operatorname{Br}_{5}^{\mp} + 3.556\operatorname{H}_{2}O = 0.89\operatorname{SO}_{4}^{\mp} + 7.112\operatorname{H}^{+} + 8\operatorname{Br}^{-}$<br>(4) $2(\operatorname{HBr} + 20.75\operatorname{H}_{2}O)(\ell) = 2\operatorname{H}^{+} + 2\operatorname{Br}^{-} + 41.5\operatorname{H}_{2}O$ .<br>(5) $\operatorname{H}_{2}O(\ell) = \operatorname{H}_{2}(g) + 0.5 O_{2}(g)$ .<br>(6) $42.5\operatorname{H}_{2}O = 42.5\operatorname{H}_{2}O(\ell)$ .<br>(7) $\operatorname{H}_{2}(g) + \operatorname{Br}_{2}(\ell) + 41.5\operatorname{H}_{2}O(\ell) + 2(\operatorname{HBr} + 20.75\operatorname{H}_{2}O)(\ell)$ . | 96.52<br>-26.37<br>-78.45<br>0<br>68.315<br>.932<br>-56.92 | 1.32<br>.29<br>1.5<br>.01<br>.010<br>.02<br>.05 |
| (8) $Co(c) + 0.5 O_2(g) = CoO(c)$<br>(9) $Br_3 = Br_2(l) + Br^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -56.76<br>2.1                                              | .10<br>.50                                      |
| (10) $Co(c) + 0.89S(c) = CoS_{0.89}(c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -50.63                                                     | 2.1                                             |

<sup>1</sup>Reaction enthalpies are corrected to 298.15±0.5 K. All reaction species are in solution unless otherwise noted.

TABLE 8. - Calorimetric reaction scheme for  $CoS_{0.89}(c)$  using Co(c) at 298 K

| Reaction <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ∆H°,<br>kcal              | Uncertainty,<br>kcal |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|
| (1) $\operatorname{Co}^{++} + 7.112 \operatorname{H}^{+} + 11 \operatorname{Br}^{-} + 0.89 \operatorname{SO}_{4}^{-} = \operatorname{CoS}_{0.89}(c) + 3.667 \operatorname{Br}_{3}^{-} + 3.556 \operatorname{H}_{2}0.$<br>(2) $\operatorname{Co}(c) + \operatorname{Br}_{3}^{-} = \operatorname{Co}^{++} + 3 \operatorname{Br}^{-}.$<br>(3) $0.89 \operatorname{S}(c) + 2.667 \operatorname{Br}_{3}^{-} + 3.556 \operatorname{H}_{2}0 = 7.112 \operatorname{H}^{+} + 0.89 \operatorname{SO}_{4}^{-} + 8 \operatorname{Br}^{-}.$ | 96.52<br>-69.71<br>-78.45 | 1.32<br>.85<br>1.5   |
| (4) $Co(c) + 0.89S(c) = CoS_{0.89}(c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -51.64                    | 2.2                  |

<sup>1</sup>Reaction enthalpies are for 298.15±0.5 K. All reaction species are in solution unless otherwise noted.

No previous low-temperature heat capacities of  $\cos_{0.89}$  have been reported in the literature.

Schchelkotunov (6) has reported measuring the heat capacities of  $\cos_{1.33}$  in the temperature range 173 to 673 K using an adiabatic calorimeter. By interpolation from his graphs, the heat capacity of  $\cos_{1.33}$  was estimated at 12.5 cal·mol<sup>-1</sup>·K<sup>-1</sup> at 300 K.

Ogawa (7) measured the heat capacity of  $CoS_2$  in the nominal range of 20 to 320 K by adiabatic calorimetry and found a sharp lambda-type anomaly in the  $C_p$  curve with a maximum of 121.2 K. The magnetic contribution to the entropy resulting from this transition was reported as 0.40Rln2 per mole  $CoS_2$ . Because of the scaling of Ogawa's graphs, no pretransition maximum in the data is evident, as was observed around 114 K in the present investigation.

Waki  $(\underline{8})$  in a short note reported the heat capacity of  $CoS_2$  from about 4.9 to 8 K. The data in this report were also presented graphically and agree fairly well over this limited range with the results of this investigation.

Mills (<u>16</u>) estimated the standard entropies at 298.15 K of  $CoS_{0.89}$ ,  $CoS_{1.33}$ , and  $CoS_2$  as 12.5±1, 14.7±2, and 16.5±1.5 cal·mol<sup>-1</sup>·K<sup>-1</sup>, respectively, from hightemperature vapor pressure measurements of various investigators. The standard entropy values for these sulfides, derived from heat capacity data in the present investigation, are 10.36±0.02, 12.96±0.03, and 16.31±0.03 cal·mol<sup>-1</sup>·K<sup>-1</sup>, respectively.

The  $\Delta Hf_{298}^{2}$  of  $CoS_{0.89}$  was determined as  $-50.63\pm2.1$  kcal·mol<sup>-1</sup> by reaction solu-Most of the formation tion calorimetry. enthalpy values for CoS0.89 reported in the literature were derived from indirect vapor-pressure measurements at high temperatures. Mills (16) selected  $-22.6\pm1$ kcal·mol<sup>-1</sup> for  $\Delta Hf^{\circ}$  of  $CoS_{0,89}$  at 298 K, based on gas equilibrium measurements of Rosenqvist (2), Alcock (3), and Kolbina (4). More recent vapor pressure measurements by Lau and Hildenbrand (17) on a mixture of approximately 20 wt pct Co and 80 wt pct CoS<sub>0.89</sub> resulted in an estimate of -35.2 kcal·mol<sup>-1</sup> for  $\Delta Hf_{298}^2$  of  $CoS_{0.89}$ . The cause of the large discrepancy between results of the present investigation and the formation enthalpies derived by second-law treatments of gas equilibria data is not readily apparent. The difference is too large to attribute to errors in vapor pressure determinations or intrinsic extrapolation errors. The high-temperature solid phase in equilibrium with the gaseous species in these studies would have to deviate substantially from the assumed CoS<sub>0.89</sub> surface composition.

Examination of the present investigation for possible sources of error reveals an unexpectedly low (less negative) value for the solution enthalpy of  $\cos_{0.89}$  in reaction 1 as compared with -105 kcal for CuS in previous measurements by Stuve (11). Since the method of acidic bromine solution calorimetry for sulfides is relatively new, it is difficult to assign with certainty the probable cause for the dissimilitude of formation enthalpies. í

ţ

#### REFERENCES

1. Chen, Y. O., and Y. A. Chang. Thermodynamics and Phase Relationships of Transition Metal-Sulfur Systems: 1. The Cobalt-Sulfur System. Metall. Trans. B, v. 9B, 1978, pp. 61-67.

2. Rosenqvist, T. A Thermodynamic Study of the Iron, Cobalt, and Nickel Sulphides. J. Iron and Steel Inst. (London), v. 176, 1954, pp. 37-57.

3. Alcock, C. B. Accurate Radiochemical Method for the Measurement of High-Temperature Equilibrium Involving  $H_2S/H_2$ Gas Mixtures. Int. J. Appl. Radia. and Isot., v. 3, 1958, pp. 135-142. 4. Kolbina, E. M., Yu. A. Barbanel, M. V. Nazarova, and S. M. Ariya. Thermodynamics of Lower Cobalt Sulfides. Vestn. Leningr. Univ., Ser. Fiz. i Khim., v. 15, No. 1, 1960, pp. 122-129.

5. Laffitte, M. Etude Thermodynamique des Monosulfures de Nickel et de Cobalt (Thermodynamic Study of the Monosulfides of Nickel and Cobalt). Bull. Soc. Chim. Fr., 1959, pp. 1223-1233.

6. Schchelkotunov, Y. A., V. N. Danilov, Ya. A. Kesler, V. K. Kamyshova, I. V. Gordeev, and Yu. D. Tret'yakov. Specific Heats of Some Chalcogenide Spinels. Izv. Akad. Nauk SSSR, Neorg. Mater., v. 13, No. 9, 1977, pp. 1716-1718.

7. Ogawa, S., and T. Yamadaya. Critical Behavior of Specific Heat and Magnetic Entropy of Metallic Ferromagnet  $CoS_2$ . Phys. Lett. A, v. 47, No. 3, 1974, pp. 213-214.

8. Waki, S., and S. Ogawa. Specific Heat of  $CoS_2$ . J. Phys. Soc. Jpn., v. 32, No. 1, 1972, p. 284.

9. Beyer, R. P., M. J. Ferrante, and R. V. Mrazek. An Automated Calorimeter for Heat-Capacity Measurements From 5 to 300 K. The Heat Capacity of Cadmium Sulfide From 5.37 to 301.8 K and the Relative Enthalpy to 1103.4 K. J. Chem. Thermodyn., v. 15, 1983, pp. 827-834.

10. Justice, B. H. Thermal Data Fitting With Orthogonal Functions and Combined Table Generation. The FITAB Program. Univ. MI., Ann Arbor, MI, contract C00-1149-143, 1969, 49 pp.

11. Stuve, J. M. A Novel Bromine Calorimetric Determination of the Formation Enthalpies of Sulfides. BuMines RI 8710, 1982, 5 pp.

12. Sulfide Solution Calorimetry - A Novel Method. Paper in Proceedings of the Workshop on Techniques for Measurement of Thermodynamic Properties, Albany Oreg., August 21-23, 1979. Bu-Mines IC 8853, 1981, pp. 161-165.

13. Wagman, D. E., W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm. Selected Values of Chemical Thermodynamic Properties. NBS Tech. Note 270-3, 1968, 264 pp.

14. Cyr, J. P., J. Daellacherie, and D. Balesdent. Standard Data for the Formation of Solid Cobaltous Oxide. J. Chem. and Eng. Data, v. 26, 1981, pp. 319-321.

15. Rossini, F. D. Assignment of Uncertainties to Thermochemical Data. Ch. in Experimental Thermochemistry. Interscience, v. 1, 1956, pp. 297-320.

16. Mills, K. C. Thermodynamic Data for Inorganic Sulfides, Selenides, and Tellurides. Butterworth, 1974, 845 pp.

17. Lau, K. H., and D. L. Hildenbrand (SRI International, Menlo Park, CA). Private communication, 1984; available upon request from N. A. Gokcen, BuMines, Albany, OR.